Fractions and decimals are way more fun when you apply them to real life scenarios, like parties, food and pets! This workbook teaches kids all about splitting up numbers.
Students are going to take a deeper dive into fractions in this unit! Learners will apply previous understanding of finding equivalent fractions, and converting between fractions and mixed numbers to work with fractions in more complex ways. Students will continue to use visual models to learn and practice adding, subtracting, multiplying and dividing fractions.
Fractions can be a tricky concept for third graders to master, but this guided lesson can help kids get there. It provides focused instruction designed by teachers and curriculum experts that is specific to the third grade curriculum. Exercises and practical examples help kids to put fractions in context with real-world math problems. When finished with the lesson, check out our fractions worksheets for more practice.
Students will have a basic understanding of fractions coming into 4th grade. In this unit students will get to explore new ways of representing fractions, including in a set of data, on number lines and using area models. Students will use their knowledge of fractions to compare fractions with like and unlike denominators.
This collection of worksheets will give fourth graders practice solving problems using fractions and decimals, plus a short introduction to negative integers.
Fractions can be challenging when taught in an abstract way. That’s why this unit invites learners to engage with fractions and mixed numbers in very visual and concrete ways using number lines, tape diagrams and area models. Students will learn different strategies to practice identifying and generating equivalent fractions.
Representing data on graphs makes math visual and involves some creativity and design. Plotting data using fractional units takes their learning one step further. Also in this unit, students learn to measure using both traditional units (like inches, feet and yards) and metric units, and how to convert measurements within each system. The concept of measurement gets two dimensional when students explore measuring and working with angles.
Prepare learners for their fifth grade debut with Week 2 of our Fifth Grade Fall Review Packet, complete with five more days of engaging activities that will review key skills and concepts.
These math exercises will help your child practice finding coordinates, solving integer problems and factoring numbers to boost his or her algebra skills.
Week 3 of this Fourth Grade Fall Review Packet explores topics in reading, writing, math, social studies, and science for a well-rounded review of third grade curriculum.
This matching worksheet is a great way to introduce students to equivalent fractions. This activity will help build your students’ foundational understanding of equivalent fractions with visual models.
Your child nails numerators and dominates denominators. Now that your student understands what a fraction is, it’s time to help them learn about equivalent fractions. Equivalent fractions are fractions that look different, but are actually the same. If your student needs a refresher, you can revisit our fractions resources. If your child feels ready to take on equivalent fractions, dive into our resources below.
Learn More About Equivalent Fractions
Equivalent fractions are fractions that look different, but they actually have the same value if you simplify them down. You can make equivalent fractions by multiplying or dividing the numerator and denominator by the same whole number. Need some more explanation? See our examples below!
Multiplication
You can multiply the numerator and denominator by the same number to get an equivalent fraction. Let’s take a look at how to make three equivalent fractions of 2⁄3 through multiplication:
2⁄3 × 2⁄2 = 4⁄6
2⁄3 × 3⁄3 = 6⁄9
2⁄3 × 4⁄4 = 8⁄12
Looking at these fractions, we can see that 2⁄3 = 4⁄6 = 6⁄9 = 8⁄12. These are all equivalent fractions!
Division
Now that you’ve seen how to find equivalent fractions by multiplication, you can now make equivalent fractions by division. Let’s divide 18⁄36 to get equivalent fractions:
6⁄12 ÷ 2⁄2 = 3⁄6
6⁄12 ÷ 3⁄3 = 2⁄4
6⁄12 ÷ 6⁄6 =1⁄2
Similar to what we did earlier, we have now made four equivalent fractions: 6⁄12 = 3⁄6 = 2⁄4= 1⁄2.
If you keep in mind that in order to work with equivalent fractions you must multiply or divide the numerator and denominator by the same whole number, you’ll be blazing through our equivalent fractions worksheets in no time!